BDAstyle

ビジネスデータ分析ツールの作成 with Excel

等分散の検定 with Excel

等分散の検定(等分散性の検定, 母分散の比の検定)

Step 0シチュエーションの設定

都市型ホテルXは,直営のレストランで小規模な回転寿司コーナーを導入することになりました。これに関して,Xはシャリ玉ロボットの導入を検討しています。現在のところ,やや安価な「マシンA」と,平均的な価格でメンテナンス性に利がある「マシンB」がその候補として検討されています。

いずれも,カタログスペックではXの要求する「(シャリの)量目15g」という基準を満たすことができます。ただ,カタログからは窺えない性能差が導入後に露見しても不都合ですので,Xは実機テストをおこなってみることにしました。下表がその結果です(単位グラム。無作為による抽出。なお,ここでは諸々の制限からデータの数は均一にできなかったと仮定します。また均一であったとしても手続きは変わりません)。

初期データ

平均を求めてみると,両者に大きな差は見られません(下表。小数点第3位で四捨五入)。また,カタログスペック(量目15g)から大きくかい離した性能でもなさそうです。

ともに平均14.86

では,カタログに表記のない分散はどうでしょうか。次のように計算(不偏分散。なお,ver.2007ではvar関数)してみると…

マシンA:=var.s(b2:B17), マシンB:=var.s(c2:c22)

順に0.1, 0.2と異なる値が見られました(標準偏差にすると順に0.32g, 0.45g)。

この差が確率的に意味のあるものなのか,以下F検定によって確認します(両側検定, 有意水準5%)。

Step 1前提

仕様表から,母集団は正規分布にしたがうものとみなします(仮定)。また,帰無仮説H0と対立仮説H1は次のように設定します。

H0 σA2B2(マシンA・Bによる量目の母分散に差はない)
H1 σA2≠σB2(マシンA・Bによる量目の母分散に差がある)

ただし,σ2:母分散。

Step 2見出しの入力

検定統計量(T)は次の式によって求められます。分散の値の大小によって上下いずれかの式を利用します。この方法は(excelを使わなくても)上側確率で示されるF分布表を利用できる点において利があります。

va^2>vb^2のときT=va^2/vb^2 ―(1)式,va^2<vb^2のときT=vb^2/va^2 ―(2)式

ただし,vA2:A群の不偏分散, vB2:B群の不偏分散。

これをシート上で計算するため,下表のような見出しを作成しておきます。

セルE2-E4:n, セルE6-E8:自由度, セルE14:有意水準α, セルE16-17:検定統計量T, セルE19:F, セルE21:P

Step 3n, 自由度 の入力または計算

A群・B群についてn(サンプルサイズ)を入力します。これをもとに自由度(n-1)を求めます。

マシンAn=16, マシンBn=21, マシンAdf=An-1, マシンBdf=Bn-1

Step 4有意水準の決定

有意水準を指定します。ここでは設定のとおり0.05(5%)と入力します。

Step 5検定統計量(分散の比)の計算

検定統計量を求めます。

vA2<vB2より,この例ではstep2-(2)式で検定統計量を求めます。

セルF17:=F12/F11

検定統計量T2.03となりました。

検定統計量T=2.03

これ以降の手続きは,

と分岐します。

[分岐]Step 6棄却限界値の計算と仮説の判断

棄却限界値を求めます。

Step2-(1)式を用いる場合(つまりvA2>vB2の場合),自由度は

第1自由度 セルF7(マシンA群の自由度)
第2自由度 セルF8(マシンB群の自由度)

とし,同様にStep2-(2)式を用いる場合(つまりvA2<vB2の場合),自由度は

第1自由度 セルF8(マシンB群の自由度)
第2自由度 セルF7(マシンA群の自由度)

として棄却限界値を求めます。両側検定ですので,式の構造は

2010 or later =F.INV.RT(α/2, 第1自由度, 第2自由度)
2007 =FINV(α/2, 第1自由度, 第2自由度)

となります。この事例は(2)式を利用するケースですので,具体的な式は下表のようになります。

セルF19:=F.INV.RT(F14/2,F8,F7)

結果,2.76であることがわかりました。

棄却限界値=2.76

先のステップで求めた検定統計量の値とともに,この値をF分布のグラフ(第1自由度20,第2自由度15)にプロットしてみると下図のようになります。T<棄却限界値Fとなり棄却域にかからないので,帰無仮説は棄却しません(受容します)。

F分布図上のT値と棄却限界値F

[分岐]Step 7P値の計算と仮説の判断

P値を求めます。

Step2-(1)式を用いる場合(つまりvA2>vB2の場合),自由度は

第1自由度 セルF7(マシンA群の自由度)
第2自由度 セルF8(マシンB群の自由度)

とし,同様にStep2-(2)式を用いる場合(つまりvA2<vB2の場合),自由度は

第1自由度 セルF8(マシンB群の自由度)
第2自由度 セルF7(マシンA群の自由度)

としてP値を求めます。両側検定ですので,式の構造は

2010 or later =2*F.DIST.RT(T, 第1自由度, 第2自由度)
2007 =2*FDIST(T, 第1自由度, 第2自由度)

となります(上側P値の2倍)。この事例は(2)式を利用するケースですので,具体的な式は下表のようになります。

セルF21:=2*F.DIST.RT(F17,F8,F7)

なお,ここでの例のようにシートに元データを列挙している場合(紫の囲みの部分),F.test関数(ver.2007ではFtest関数)によって分散の大小を気にすることなしにP値を求めることもできます(下図)。

セルF22:=F.TEST(B2:B17,C2:C22)

結果,0.17であることがわかりました。

P値=0.17

この値はF分布のグラフ(第1自由度20,第2自由度15)に以下の領域で示されます。P>有意水準α(0.05)となり,帰無仮説は棄却しません(受容します)。

F分布図上の片側P値

Step 8X社の判断

都市型ホテルXは,マシンA・Bの分散に有意な差は見られなかった(≒性能差はない)と判断し,価格とメンテナンス性に焦点を絞って購入の検討をつづけることを決定しました。

参考文献

等分散の検定に対応するexcelアドインソフト

その他の参照